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Irradiation induced swelling of reactor core materials may jeopardize safe and reliable operation of fast
reactors due to swelling-induced distortion and interference of core components. The principles of incre-
mental continuum plasticity are used here to develop constitutive equations that can be used to conduct
engineering evaluations of these potential problems. The equations are used in Part II to analyze previ-
ously unreported in-reactor creep and swelling data obtained ca. 1977–1979 as part of the US breeder
reactor program. Results of this stress state experiment showed for the first time that a deviatoric stress
can affect volumetric swelling. The constitutive equations developed here predict that, in the presence of
significant swelling, deviatoric and volumetric strain rate components each are functions of both devia-
toric and hydrostatic components of stress for both linear and non-linear creep.

Published by Elsevier B.V.
1. Introduction

Irradiation induced void swelling of fast reactor core materials
may lead to distortion and interference of core components, which
can affect coolant flow, core reactivity, the movement of control
and safety rods and removal of expended fuel bundles. Engineering
evaluations of the severity of these potential problems require
multiaxial equations that capture the complex relationships that
exist among irradiation creep, swelling and the components of
stress. Early experimental results showed that stress can increase
volumetric swelling rate [1] and that deviatoric, volume conserva-
tive creep may be dependent on the swelling rate [2,3].

Experimental evidence that deviatoric stress may affect swell-
ing first was reported in 1979 at a meeting of the US National Clad-
ding and Duct Materials Development Program [4] where
preliminary results of an in-reactor multiaxial creep experiment
[5] were presented. Experimental results of this ‘‘stress state”
experiment were summarized by Garner [6] but details were not
reported in the open literature due to reductions in funding and
eventual cancellation of the US breeder reactor program. Results
of the stress state experiment, which are reported in a companion
paper [7], hereafter referred to as Part II, show that in the presence
of significant swelling, stress-affected swelling rate may depend on
deviatoric stress, even for a pure shear stress state for which there
is no hydrostatic stress.
B.V.
Commenting on results of the stress state experiment, Garner
[6] conjectured that the deviatoric component of a stress state,
rather than the hydrostatic component, is likely the component
that affects swelling and that this is an indication of the strong link
between swelling and irradiation creep. The effect of a shear (devi-
atoric) stress on swelling was considered by Straalsund, Guthrie
and Wolfer (SGW) [8] in an early void growth model, leading to
a general conclusion ‘‘that both stress-accelerated void growth
and dislocation loop creep are manifestations of the same mecha-
nism, and must therefore occur simultaneously in the presence of a
stress state that contains both deviatoric and hydrostatic compo-
nents”. Their model, however, related stress effect on void growth
entirely to the hydrostatic stress component and, therefore, did not
include the possibility that deviatoric stress may affect void
growth in the absence of a hydrostatic component.

The principles of continuum plasticity, sometimes guided by
mechanistic models, previously have been used [9–11] to derive
multiaxial constitutive equations for neutron irradiated materials
undergoing void swelling. By analogy to the multiaxial stress–
strain equations for linear elastic behavior, Wire and Straalsund
(WS) [10] developed a multiaxial, linear creep equation that
includes stress-affected swelling. However, these equations again
related stress-affected swelling to the hydrostatic component of
stress, only.

Hall [11] extended the WS equations to include non-linear creep
of a material undergoing stress-free and stress-affected void swell-
ing. Using microstructural modeling estimates of equation parame-
ters, obtained from the work of SGW [8], the predicted effects of
stress state triaxiality, stress exponent and plastic Poisson’s ratio
on deviatoric strain rate were explored parametrically. Although
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not emphasized in this early paper, Hall’s equations also predict
that swelling is a function of deviatoric stress, but only for non-lin-
ear creep and a for mixed deviatoric plus hydrostatic stress state.

Hall’s original constitutive equations are extended here to in-
clude the possibility that, in addition to mechanistic coupling of
deviatoric creep and stress-affected swelling, there is a stress-state
coupling of the deviatoric and hydrostatic stress invariants. This ap-
proach provides the desired expression for volumetric strain rate,
which predicts that a deviatoric stress may affect swelling in the ab-
sence of a hydrostatic stress, for both linear and non-linear creep.
The revised deviatoric and volumetric strain rate equations are ex-
plored parametrically in order to illustrate the complex, stress-state
dependent correlations that potentially may exist among the creep
and swelling components of in-reactor deformation and the devia-
toric and hydrostatic invariants of the applied stress.
2. Constitutive equation development

2.1. Strain rate and stress components

Constitutive equations relate principal components of irradia-
tion damage-based strain rate, _eiði ¼ 1;2;3Þ, to principal stresses,
riði ¼ 1;2;3Þ. Damage-based strain rates are defined as plastic
strain increments per atomic displacement, _ei � Dei=Ddpa; ði ¼ 1;
2;3Þ. Each strain rate component is a sum of two terms,
_ei ¼ _e0i þ _S=3; ði ¼ 1;2;3Þ, where _e0iði ¼ 1;2;3Þ are volume conser-
vative, deviatoric components of strain (creep) rate,
_e01 þ _e02 þ _e03 ¼ 0, and _S ¼ _e1 þ _e2 þ _e3 is volume non-conservative
swelling rate. Volumetric swelling rate is a sum of two terms,
_S ¼ _So þ _Sr, where _So is the stress-free swelling rate, and _Sr is the
stress-affected swelling rate, the latter of which also will be called
‘‘volumetric creep”, depending on context. The total stress-depen-
dent strain rate is _ei ¼ _e0i þ _Sr=3; ði ¼ 1;2;3Þ; or _ei ¼ _ei � _So=3;
ði ¼ 1;2;3Þ. The mean (hydrostatic) stress, is rH ¼ ðr1 þ r2þ
r3Þ=3 and the deviatoric components of the principal stress are
r0i ¼ ri � rH; ði ¼ 1;2;3Þ, where r01 þ r02 þ r03 ¼ 0.

Equivalent multiaxial stress states are defined as those having
equal mechanical energy dissipation rates:

_W �
X3

i¼1

ri _ei ¼
X3

i¼1

r0i þ rH
� �

_e0i þ _Sr=3
� �

¼ re _ee; ð1Þ

where re is the equivalent stress and _ee is the equivalent strain rate.
The uniaxial stress state is chosen as the reference stress state with
the requirement that for a tensile test ði ¼ 1Þ, the proportionality
between _ee and re must reduce to _ee=re ¼ ð _e1 � _So=3Þ=r1 ¼ _e1=r1.
The conventional von Mises equivalent stress, rvM , and equivalent
strain rate, _evM , are defined, respectively, as invariants of the devia-
toric stress and strain rate tensors:

rvM¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2

X3

i¼1
r0ir0i

r
; _evM ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

X3

i¼1
_e0i _e
0

r
: ð2Þ
2.2. Deviatoric and volumetric creep rate equations

Hall’s original constitutive strain rate equations were developed
according to the principles of incremental, continuum plasticity,
beginning with an assumption of the St. Venant–Levy–Mises flow
rule, which relates increments of plastic strain to stress [12]. The
principal shear strain increments were assumed to be proportional
to principal components of shear stress and the stress-affected
swelling increment was assumed to be proportional to the hydro-
static stress. Equivalent multiaxial stress states were defined
according to Eq. (1) and the uniaxial stress state was chosen as
the reference stress state. With these assumptions and require-
ments, expressions were derived for re and _ee. Deviatoric and vol-
umetric strain rate equations were then derived by substitution
back into the St. Venant–Levy–Mises equations.

Deviatoric and volumetric creep rate equations also can be ob-
tained more generally by assuming the existence of a plastic poten-
tial, which is a scalar function of stress from which the plastic
strain increments can be obtained by differentiation with respect
to the stress components [13]. This function serves the same role
as the yield function associated with a yield criterion, such as the
distortion energy criterion of von Mises. By assuming a multiaxial
equivalent stress, re, as the yield function, the plastic strain incre-
ment can be obtained according to

_e0i ¼ _ee
@re

@r0i
; i ¼ 1;2;3; _Sr ¼ _ee

@re

@rH
: ð3Þ

An expression for re and an expression for _ee in terms of re are
needed to apply these equations. We assume that if there is a
power law relationship between strain rate and stress for a refer-
ence uniaxial stress state, that is, _e ¼ _eoðr=roÞn, then for all stress
states _ee ¼ _eoðre=roÞn where _eo is a reference strain rate and ro is
a reference stress. In principle, any convenient reference strain rate
could be selected. However, as discussed in more detail in Sec-
tion 2.5, the experimentally observed and theoretically predicted
coupling of deviatoric and volumetric creep rates with stress-free
swelling rate can be used to establish an expression relating _eo to
the stress-free swelling rate, _So, and the swelling-independent
creep compliance, Bo.

2.3. Coupling of deviatoric and hydrostatic stress invariants

Derivation of a volumetric creep equation that is a function of
the deviatoric stress in the absence of a hydrostatic stress compo-
nent can be accomplished phenomenologically by extending Hall’s
effective stress expression [11] to include a term that couples devi-
atoric and hydrostatic stress invariants:

re ¼
2
3
ð1þ mpÞr2

vM þ 3ð1� 2mpÞr2
H þ 4kð1þ mpÞð1� 2mpÞrvMrH

� �1
2

:

ð4Þ

In this expression mp is a material parameter that, by analogy to
linear elasticity, is identified [8,10] as a plastic Poisson’s ratio,
which is defined as a ratio of the stress-dependent plastic incre-
ments of strain in a tensile test, mp � � _e2= _e1. The third term on
the right hand side of Eq. (4) is the stress invariant coupling term
and k is the stress invariant coupling coefficient. When k ¼ 0, Eq.
(4) reduces to Hall’s original effective stress expression, where mp

in this expression is related to a parameter b in the original expres-
sion by mp ¼ ð1� bÞ=ð2þ bÞ. Regrouping terms, this equation can
be rewritten as

re ¼
2
3
ð1þ mpÞ 1þ 3kð1� 2mpÞ

rH

rvM

� �
r2

vM

	

þ 3ð1� 2mpÞ 1þ 2
3

kð1þ mpÞ
rvM

rH

� �
r2

H


1
2

: ð5Þ

The factors in square brackets, each of which includes one-half
the stress invariant coupling term, are functions of the stress state
as expressed by a ratio of stress state invariants called the stress
state triaxiality, rH=rvM . The effect of the factors in brackets is to
determine the relative contributions of deviatoric and hydrostatic
stress components to the equivalent stress. One result of adopting
this equation is that the stress invariants are no longer indepen-
dent stress variables as the contribution of each to re now depends
on the magnitude of the other.

Strain rate components are derived from Eq. (5) using Eqs. (3).
The deviatoric creep rate is
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_e0i ¼ _ee
@re

@r0i
¼ ð1þ mpÞ _eo

re

ro

� �n�1

2kð1� 2mpÞ
rH

ro
þ r0i

ro

� �
;

i ¼ 1;2;3; ð6Þ

and the volumetric creep rate is

_Sr ¼ _ee
@re

@rH
¼ 3ð1� 2mpÞ _eo

re

ro

� �n�1 2
3

kð1þ mpÞ
rvM

ro
þ rH

ro

� �
: ð7Þ

When k ¼ 0, Eqs. (6) and (7) reduce to Hall’s original constitu-
tive equations. In this case, the volumetric creep rate is a function
of the deviatoric stress only for non-linear creep ðn > 1Þ. When
k > 0, Eq. (6) shows that, even for linear creep ðn ¼ 1Þ and as long
as �1 < mp < 1=2, the deviatoric creep rate is a function of both
deviatoric and hydrostatic stress and Eq. (7) shows that the volu-
metric strain rate is a function of both hydrostatic and deviatoric
stress invariants. Moreover Eq. (7) shows the desired result that
a deviatoric stress may affect swelling in the absence of a hydro-
static component. For example, for n ¼ 1 and rH ¼ 0, Eq. (7) re-
duces to

_Sr ¼ 2k _eoð1� 2mpÞð1þ mpÞrvM=ro: ð8Þ

Likewise, for n ¼ 1 and rvM ¼ 0, Eq. (6) reduces to

_e0i ¼ 2k _eoð1� 2mpÞð1þ mpÞrH=ro; i ¼ 1;2;3: ð9Þ

Eq. (8) shows that for a pure shear state of stress, for which
there is only a deviatoric stress component, there is a volumetric
strain rate component as long as k > 0 and �1 < mp < 1=2. Eq. (9)
shows that for a pure hydrostatic state of stress there is a deviator-
ic creep rate, again, as long as k > 0 and �1 < mp < 1=2. Finally,
note that when mp ¼ 1=2, which is the case for creep of void free
material, Eq. (8) shows that there is no stress-affected swelling
component, as _Sr ¼ 0.

2.4. Relationship to other continuum models

These results are counterintuitive based on the precepts of con-
ventional continuum plasticity. In fact, physical justification for the
possibility that deviatoric stress may influence the growth of voids
in metals in the absence of a hydrostatic stress may be unique to
irradiation induced mechanisms of creep and void swelling.
Although models for the densification of porous metals by thermal
creep [14] predict that deviatoric stress may affect the rate of den-
sification, they require non-linear, power-law creep and a stress
state that is largely hydrostatic. While stress acts directly to shrink
pores in metals by a thermally-activated, coupled mechanism of
vacancy diffusion and dislocation creep [15], stress acts indirectly
to enhance irradiation void growth. Both the deviatoric and hydro-
static components of stress increase the bias for absorption of
interstitials by dislocations thereby increasing the concentration
of excess vacancies available for absorption by defect-neutral
voids, which increases the rate of void growth and couples void
growth with volume conservative creep [16]. This is discussed in
more detail in Section 2.5.

2.5. Model parameters

There are five parameters, mp, n, _eo, ro and k that we expect to
have values that are specific to the operative creep mechanisms.
Matthews and Finnis [17] summarized the creep mechanisms that
have been proposed for irradiation creep. Both swelling-indepen-
dent and swelling-dependent deviatoric creep mechanisms were
considered. According to these authors, stress-induced preferential
nucleation (SIPN) of dislocation loops and the bowing of disloca-
tion lines by stress-assisted preferential absorption (SIPA) of inter-
stitials are most relevant to the transient period prior to
attainment of steady state creep. Dislocation climb, by stress-in-
duced preferential absorption of interstitials at dislocations fol-
lowed by dislocation glide are considered to be necessary to
account for steady state creep.

In simplest expression these models assume that the only sinks
for absorption of interstitials and vacancies are dislocations and
voids, that dislocations have a bias for the absorption of intersti-
tials, that voids are neutral sinks for the absorption of interstitials
and vacancies, and that creep is by dislocation climb. Both devia-
toric and hydrostatic components of stress increase the bias of dis-
locations for the absorption of interstitials, thereby increasing the
absorption of excess vacancies by voids. An applied deviatoric
stress, acting alone, may increase dislocation bias for interstitials
and thereby indirectly enhance the void growth rate.

With these assumptions, SGW [8] developed approximate
expressions for the plastic Poisson’s ratio: mp � � _e2= _e1 �
1=2� 4prvqv=qd as 4pqvrv=qd ! 0 and mp � �1=3 as 4pqvrv=

qd !1. In these expressions, rv is the average void radius, qv is
the number of voids per unit volume and qd is the dislocation line
length per unit volume. These expressions predict that mp ¼ 1=2
when the void fraction, 4prvqv, is zero, which is the expected result
for non-irradiated, void free material. With increasing irradiation
damage, voids become the dominant sink when 4prvqv > qd. As
a result, mp decreases, and may become negative. According to
SGW, there are no combinations of rv, qv, and qd that will yield a
lower value for mp than �1=3. However, a plastic Poisson’s ratio
of mp ¼ �1 is physically permissible [18] and materials having neg-
ative Poisson’s ratios, as low as about �0.8, have been manufac-
tured and studied extensively [19]. Negative ratios are of interest
here as Eqs. (6) and (7) predict that for mp ¼ �1, creep deformation
consists of volumetric strain rate only, that is, there is no deviatoric
strain rate component. Furthermore, ‘‘disappearing creep” has
been reported by Porter and Garner [20] for stainless steel irradi-
ated at a temperature of 550 �C to about 60 dpa in EBR-II.

Using experimental measurements of rv;qv and qd obtained by
examination of irradiated solution annealed Type 316 stainless
steel, SGW were able to estimate mp as a function of irradiation
damage. They examined stainless steel that had been irradiated
over the temperature range of about 375–650 �C for two neutron
fluence levels (3 � 1022 n/cm2 and 5 � 1022 n/cm2). They found
that for the highest fluence level and a void fraction of 0.02, mp

had an estimated value of about 0–0.02 over a broad temperature
range from about 450 �C to 550 �C. Presumably, further reductions
in mp are possible with increased swelling levels. Fig. 1 shows the
results of the SGW study plotted as mp versus irradiation damage
in units of dpa. The dashed curve is an extrapolation of the data
trend to mp ¼ �1, which, to be consistent with the results reported
by Porter and Garner, was forced to occur at about 60 dpa.

Not included explicitly in the SGW expressions for mp is the ef-
fect that the dislocation structure has on the magnitude of mp. Their
expression for mp can be written as mp � 1=2� 3Q=2d where
Q � 4prvqvZv=qdZd

v is a ratio of void sink strength to dislocation
sink strength and d ¼ DZd

i =ðZ
d
i � Zd

v Þ is a dislocation alignment bias
factor. In this expression DZd

i is the difference in capture efficiency
of stress-aligned and non-aligned dislocations and Zd

i;v are the
capture efficiencies of dislocations for interstitials and vacancies.
Then mp is not simply a function of the ratio of void and dislocation
densities but is a function of the relative void and dislocation sink
strengths and the dislocation alignment bias factor.

This understanding of mp has special significance for reirradia-
tion experiments. For example, under the influence of an aniso-
tropic applied stress state, stress-induced preferential nucleation
and alignment of dislocation loops will lead to an anisotropic dis-
location structure that can support a deviatoric strain component,
even after the stress is removed, as has been shown by Garner,
Flinn and Hall [21] in a stress-history effects experiment. Results
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Fig. 1. Plastic Poisson’s ratio derived from microstructural data [8]. Data are
extrapolated to a value of �1 at 60 dpa in keeping with observations of
‘‘disappearing creep” [6].
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of this experiment showed that when tubes that were previously
irradiated under a 2/1 biaxial stress state were reirradiated with-
out stress the strains accumulated during the reirradiation period
were not isotropically distributed, but continued to exhibit strain
ratios characteristic of the 2/1 stress state. The anisotropic strain
rate diminished with increasing irradiation exposure, however, it
is clear that the material retained a memory of the previous stress
state.

This creep-before-swelling experiment is the inverse of the
experiment reported in Part II, which is a swelling-before-creep
experiment. In the present case, with this understanding of the ef-
fect of pre-existing dislocation structures, one should expect that
application of uniaxial stress state to tubing that has an established
isotropic dislocation structure would result in less lateral contrac-
tion than would be characteristic of a specimen irradiated with an
applied stress from the beginning of the irradiation exposure. This
would then appear as a smaller reduction in mp than would other-
wise occur. Experimental determinations of mp using tubing previ-
ously irradiated without stress, as in Part II, may then be expected
to give values larger than those predicted by the approximate
expressions derived by SGW.

Pure climb models of irradiation creep predict that the creep
rate is a linear function of stress while for climb-glide models the
stress exponent, n, depends on the obstacle to glide [16]. In the
case where mobile dislocations are blocked by a pile-up of disloca-
tions against a strong obstacle, n is 2. In the discussion below we
assume that n is either 1 or 2.

Wolfer et al. [22] developed a microstructural model from
which they derived a semi-empirical expression for deviatoric
creep as a simple linear sum of swelling-independent and swell-
ing-dependent terms,

_e0i ¼ ðBo þ D _SÞr0i; i ¼ 1;2;3; ð10Þ

where Bo is the swelling-independent creep compliance and D is the
creep-swelling coupling coefficient. This equation is justified phe-
nomenologically as irradiation creep occurs in the absence of swell-
ing as well as after swelling begins [6]. But as _S ¼ _So þ _Sr, and _Sr

arguably is a function of _So, Eq. (10) is unnecessarily complicated
and can be reduced to a dependence on _So. Moreover, this equation
is inconsistent with the equations developed here based on consid-
erations of the continuum flow of materials. This can be demon-
strated by considering Eqs. (6) and (7), which establish a
relationship between _e0i and _Sr that is independent of any relation-
ship there may or may not be between _e0i and _S. Combining Eqs. (6)
and (7) and solving we find

_e0i ¼
1þ mp

3ð1� 2mpÞ
r0i
rH

_Sr; i ¼ 1;2;3; ð11Þ

where it is assumed that n ¼ 1 and k ¼ 0 to achieve comparability
to Eq. (10). As Eqs. (10) and (11) cannot hold simultaneously, we re-
ject Eq. (10) as an acceptable expression of the creep-swelling
coupling.

In order to maintain an uncomplicated and non-redundant
accounting of both swelling-dependent and swelling-independent
components of the total irradiation creep deformation, it is advan-
tageous to relate the deviatoric creep components _e0i to _So rather
than to _S so that Eq. (10) becomes

_e0i ¼ ðBo þ D _SoÞr0i; i ¼ 1;2;3: ð12Þ

This relationship is more accessible experimentally as independent
measurements of the stress-free swelling, _So, can be obtained using
stress-free control specimens.

Note that the constitutive model developed here has to this
point not anticipated that there may be two independent types
of creep mechanisms, one swelling-independent and the other
swelling dependent. In order to incorporate the assumption that
these two creep components are independent and additive, and
to honor customary usage found in the literature [6], we specialize
Eq. (6) for these two cases and then simply add the resulting equa-
tions. First consider the conditions for which Eq. (12) was devel-
oped, that is, for a uniaxial stress state, n ¼ 1, and k ¼ 0. In this
case Eq. (6) reduces to _e0i ¼ ð1þ mpÞ _eor0i=ro. For the swelling-inde-
pendent creep case we note that when _So ¼ 0 the irradiation void
fraction is negligible and, according to the discussion above,
mp ¼ 1=2. Then _e0i ¼ 3 _eor0i=2ro and _Sr ¼ 0 so that by comparison
to Eq. (12), we must have Bo ¼ 3 _eo=2ro. Now for the swelling-
dependent creep case we take _So > 0, Bo ¼ 0 and �1 < mp < 1=2.
Then D _So ¼ ð1þ mpÞ _eo=ro. If for this case we now choose as the ref-
erence creep rate, _eo � _So, we can identify D as D ¼ ð1þ mpÞ=ro.
Now, consistent with the assumption that swelling-independent
and swelling-dependent creep components are additive, the
expression for the total deviatoric creep can be written in terms
of Bo and D as

_e0i ¼ Bo
re

ro

� �n�1

r0i þ D _So
re

ro

� �n�1

2kð1� 2mpÞrH þ r0i

 �

;

i ¼ 1;2;3; ð13Þ

and the volumetric creep rate, Eq. (7), becomes

_Sr ¼
3ð1� 2mpÞ

1þ mp
D _So

re

ro

� �n�1 2
3

kð1þ mpÞrvM þ rH

� �
: ð14Þ

Within the assumptions and equations developed here, the
magnitude of D ¼ ð1þ mpÞ=ro is expected to decrease with increas-
ing radiation exposure, from an initial value of D ¼ 1:5=ro to a va-
lue of D ¼ 0:67=ro as mp decreases from a maximum value of 1/2 to
a value as low as perhaps �1/3. Note that the reference stress, ro,
which may be considered a radiated-affected flow stress, is ex-
pected to increase with increasing radiation exposure, again pre-
dicting that D will decrease with increasing radiation exposure.
This trend is confirmed by Garner’s review and discussion [6] of
the collection and interpretation of experimental data from which
magnitude of the creep-swelling coupling coefficient D has been
derived. In a more recent paper Ukai and Ohtsuka [23] analyzed
fuel pin cladding and pressurized tube data obtained on Modified
316 stainless steel and found that D decreased and asymptotically
approached a constant value with increasing swelling strain. Using



0.5

1.0

1.5
1 2pν =

0
1 3

1 3−

1

0

n

λ
=
=

116 M.M. Hall Jr. / Journal of Nuclear Materials 396 (2010) 112–118
a climb-controlled glide rate-theory model, they also showed that
D � 1=ro where ro ¼ abG

ffiffiffiffiffiffiqd
p

, a is a coefficient involving the Tay-
lor factor, b is magnitude of the Burgers vector, G is the shear mod-
ulus and qd is the density of dislocations. They attributed the
decline in D to the presence of precipitates acting as point defect
sinks while here the decline, beyond that due to an increase in
ro, is attributed to a decrease in mp.

There appears to be no direct analogue, in either continuum
plasticity or microstructural models of irradiation creep and swell-
ing, to the stress-state dependent terms in Eqs. (6) and (7), or Eqs.
(13) and (14), from which the physical meaning and magnitude of
the stress invariant coupling parameter k can be evaluated. The
expressions for _Sr and _e0i are however anticipated in the work of
Matthews and Finnis [17]. In a manner similar to Eqs. (6) and
(7), which are sums of two terms, one proportional to the hydro-
static stress and the other proportional to the deviatoric stress,
Matthews and Finnis consider that the bias of dislocations for
interstitials can be split into two terms dependent on irradiation
damage and stress; one dependent on the hydrostatic stress and
one dependent on the deviatoric stress. However, their creep and
swelling equations are not easily recast in a manner that reveals
a microstructural interpretation of k. For the parametric studies be-
low, the stress invariant coupling parameter is assumed to have a
value 0 6 k 6 1 where a value of 0 corresponds to no stress invari-
ant coupling.
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Fig. 2. Swelling-dependent deviatoric creep as a function of deviatoric stress in the
absence of stress invariant coupling ðk ¼ 0Þ and for a stress exponent of 1. For this
case, the swelling-dependent deviatoric creep component is independent of the
stress state but has a magnitude that is dependent on the plastic Poisson’s Ratio.
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3. Parametric evaluations

3.1. Deviatoric creep rate

To explore the strain rate behaviors predicted by the constitu-
tive equations developed here, we ignore the uninteresting case
of swelling-independent creep (first term on the RHS of Eq. (13))
and focus on the swelling-dependent creep components (Eq. (14)
and second term on RHS of Eq. (13)). This is equivalent to exploring
Eqs. (6) and (7) with _eo � _So. We also consider the uniaxial and
biaxial stress states that can be achieved using tubular specimens
subjected to combinations of internal pressure and axial force
loading. Table 1 lists stress states, deviatoric stresses, magnitudes
of the stress invariants and ratios of these invariants for the stress
state experiments reported in Part II. The principal stress compo-
nents are r1 ¼ r, r2 ¼ ar and r3 ¼ 0 where r is the maximum
(non-zero) principal stress and a is the ratio of principal stresses
that uniquely identifies each biaxial stress state considered. Para-
metric analyses are performed for each of the stress states, for
the corresponding triaxiality ratios of�1/3, 0, 1/3 and 2/3, for three
values of the coupling parameter, k = 0, 0.2 and 0.5 and for stress
exponents of 1 and 2.

Fig. 2 shows the swelling-dependent deviatoric creep rate, Eq.
(6), plotted versus the deviatoric stress for the simplest case;
n ¼ 1 and k ¼ 0. For this case, _e0 is simply proportional to r0 where
the proportionality factor decreases as mp decreases. Note that this
strain rate component ‘‘disappears” when mp ¼ �1. Fig. 3 shows the
effect of stress invariant coupling, that is, for k > 0. In this case _e0 is
not simply proportional to r0; it is now a function of the stress
Table 1
Stress ratios and stress invariants for representative stress states.

Stress state a ¼ r2=r1 r0 rvM rH rH=rvM

Shear 1/�1 r ffiffiffi
3
p

r 0 0

Biaxial tension 2/1 r=2
ffiffiffi
3
p

r=2 r=2 1=
ffiffiffi
3
p

Axial tension 0/1 2r=3 r r=3 1/3
Axial compression 0/�1 r r �r=3 �1/3
Balanced biaxial tension 1/1 r=3 r 2r=3 2/3
state triaxiality, rH=rvM , and is asymmetrical about r0 ¼ 0, that
is, deviatoric strain rate in tension occurs at a greater rate than
deviatoric strain rate in compression. This is illustrated for the uni-
axial stress state, for which rH=rvM ¼ �1=3. Note also that the
deviatoric strain rate component now may ‘‘disappear” for uniaxial
compression for combinations of k and mp such that
k ¼ 1=ð1� 2mpÞ.

Now consider non-linear swelling-dependent deviatoric strain
rate. Fig. 4 shows that even in the absence of stress invariant cou-
pling (k ¼ 0), _e0 is a function of stress state triaxiality when n > 1.
However, in this case, strain rate in compression is equal in magni-
tude to strain rate in tension. Fig. 5 shows that when n > 1 and
k > 0, swelling-dependent deviatoric strain rate is again asymmet-
ric about r0 ¼ 0.
-1.5

-1.0

Fig. 3. As in Fig. 2, but with stress invariant coupling ðk ¼ 0:5Þ between deviatoric
and hydrostatic components of stress. In this case swelling-dependent deviatoric
creep is dependent on stress state triaxiality and is asymmetric in deviatoric stress.
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3.2. Volumetric creep rate

Now consider the effect that deviatoric stress may have on vol-
umetric strain rate, Eq. (7). Fig. 6, which is plotted versus rvM for
n ¼ 1 and constant stress state triaxiality ratios, shows that in
the absence of stress invariant coupling (k ¼ 0), _Sr is independent
of rvM . That is, _Sr is simply proportional to rH for all stress states
and this proportionality increases with stress state triaxiality. The
purpose of plotting _Sr versus rvM for constant stress state triaxial-
ity ratios instead of plotting versus rH is to illustrate under what
conditions there may be a deviatoric stress effect in the absence
of a hydrostatic stress and to relate this to the effect of other stress
states on _Sr. Compare Fig. 6 with Fig. 7, the latter of which is plot-
ted for the same conditions as Fig. 6 except that k ¼ 0:2. Fig. 7
shows that when there is a stress invariant coupling (k > 0), but
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Fig. 4. As in Fig. 2, but for a stress exponent of 2. Swelling-dependent deviatoric
creep remains a function of stress state and is symmetric in deviatoric stress.
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Fig. 5. As in Fig. 4, but with stress invariant coupling ðk ¼ 0:5Þ. For this case
swelling-dependent deviatoric creep is dependent on stress state triaxiality and is
asymmetric in deviatoric stress.
there is no hydrostatic stress component, _Sr is non-zero and in-
creases in proportion to rvM . As in Fig. 6, the proportionality in-
creases with increasing stress state triaxiality. However, there is
now an asymmetry as can be seen by comparing the trends for
the uniaxial tension and uniaxial compression stress states. The
negative rate of volumetric strain rate for uniaxial compression is
less than the positive rate of volumetric strain rate under uniaxial
tension. Eq. (7) predicts that the volumetric strain rate component
may be suppressed under uniaxial compression for combinations
of k and mp such that 1=k ¼ 2ð1þ mpÞ. As shown in Fig. 8, for larger
magnitudes of the stress invariant coupling term (k ¼ 0:5), the vol-
umetric strain rate may be positive under uniaxial compression.
Fig. 9 shows similar trends for non-linear creep.
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Fig. 6. Volumetric creep as a function of von Mises invariant of the deviatoric stress
in the absence of stress invariant coupling ðk ¼ 0Þ and for a stress exponent of 1. The
curve for a stress state triaxiality of 0 shows that, for this case, volumetric creep is
not a function of the deviatoric stress.
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Fig. 7. As in Fig. 6, but for stress invariant coupling ðk ¼ 0:2Þ. The curve for a stress
state triaxiality of 0 shows that, for this case, volumetric creep is a function of the
deviatoric stress.
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Fig. 8. As in Fig. 7, but for larger stress invariant coupling ðk ¼ 0:5Þ. The curve for
uniaxial compression (triaxiality of �1/3) shows that compressive stress states may
result in volumetric expansion.
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Fig. 9. As in Fig. 8, but for a stress exponent of 2.
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4. Summary and conclusions

The constitutive equations developed here provide a phenome-
nological model that is consistent with the early experimental
observation of Hall [11] that a deviatoric stress can affect volumet-
ric creep (stress-affected swelling) in the absence of a hydrostatic
stress. The equations moreover predict that both deviatoric and
volumetric components of irradiation creep each are functions of
both deviatoric and hydrostatic invariants of stress for both linear
and non-linear creep.

These constitutive deformation equations appear to have no
analogue in conventional continuum plasticity and may be unique
to a radiation environment due to the manner with which irradia-
tion creep and swelling are coupled mechanistically. The allocation
of irradiation creep between deviatoric and volumetric compo-
nents is determined by a plastic Poisson’s ratio that depends on
the relative defect absorption strengths of irradiation voids and
dislocations and on isotropy of the dislocation structure. Another
unique feature of these equations is the coupling of deviatoric
and hydrostatic stress invariants, the strength of which depends
on a coupling coefficient that does not have an obvious mechanis-
tic interpretation. Introduction of this stress-state coupling results
in the potential for stress-affected swelling for a pure shear, devi-
atoric stress state and deviatoric creep for a pure hydrostatic stress
state. This latter phenomenon would, however, logically require a
pre-existing anisotropic dislocation structure. The possibility that
this ratio may be negative allows for the possibility that the mag-
nitude of the deviatoric creep rate may be reduced to near zero
(‘‘disappear”) as the density of irradiation voids approaches and
exceeds the dislocation line density. Finally, due to the stress
invariant coupling, both deviatoric and volumetric creep occur at
rates in tension that are greater than the magnitude of creep rates
in compression.
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